Wl TR-91-1069

AD-A238 259
LR

ADA COMPILER EVALUATION CAPABILITY

Tom Leavitt
Kermit Terrell

Boeing Military Airplanes
P 0 Box 7730
Wichita KS 67277-7730

July 1991

Interim Report for Period November 1989 - November 1990

Approved for public release; distribution is unlimited.

AVIONIC3 DIRECTORATE "04653
A FORCE SYSTENS ConiAND \M\\l\\‘l\\\l\\||\\\I\|\||\\|$|\\|I\\n\\||\

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543 -

91 v 10 120

UNCLASSIFIED

F&EUP!TY‘ CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

STPIE LY,

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for Public Release

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution Unlimited

4. PERFORMING O~GANIZATION REPORT NUMBER(S)
Boeing Document Number
D500-124870-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)
WL-TR-91-1069

6b. OFFICE SYMBOL

6a. NAME OF PERFORMING ORGANIZATION
(If applicable)

Boeing Military Airplanes

7a. NAME OF MONITORING ORGANIZATION
Avionics Directorate (WL/AAAF)

Wright Laboratory

6c. ADDRESS (City, S:ate, and ZIP Code)

Post Office Box 7730
Wichita KS 67277-7730

70. ADORESS (City, State, and ZIP Code)

WPAFB 0H 45433~6543

8b. OFFICE SYMBOL
(If applicable)

Ba. NAME OF FUNDING/SPONSORING
ORGANIZATION

Ada Joint Program Office

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F33615-86-C-1059

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

Room 3E114 (1211 S. Fern Street) PRC GRAM PROJECT TASK Wocags:%ano
The Pentagon ELEMENT NO. | NO. NO ACCE A
Washington DC 20301-3080 63756D 2853 01 03

11. TITLE (Include Security Classification)
The Ada Compiler Evaluation Capability
Final Technical Report Release 2.0

12. PERSONAL AUTHOR(S)
Tom Leavitt. Kermit Terrell

13a. TYPE OF REPORT 13b. TIME COVERED

Interim FROM 8Nav89 . TO8Nav9(

15. PAGE COUNT
24

14. DATE OF REPORT (Year, Month, Day)
July 1991

16. SUPPLEMENTARY NOTATION s

ACEC Version 3.0 is currently under development

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Evaluation Test Suite
09 02 Performance Ada
Usability Compiler

development of the Ada Compiler Evaluation
added 300 new performance tests, assessors

Version 3.0.)
—

19. ABSTRACT (Continue on reverse 'f necessary and identify by block number)

This document reviews the findings and lessons learned in accomplishing the

Capability Version 2.0. This version
for program library systems, symbolic

debuggers, and system diagnostics, a new tool to simplify the preparation of
input to median and a Single System Analysis Tool.
improvements made to the testsuite, details the technical advantages of the

improvements and provides a list of enhancements under consideration for ACEC

This report focuses on the

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

TXUNCLASSIFIED/UNLIMITED [0 SAME AS RPT.] DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Ravmond Szymansk;

22¢. OFFICE SYMBOL
WL/AAA¥

22b. TELEPHONE (Include Area Code)
§ S13)e55=3947

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASS'FICATION OF THIS PAGE

UNCLASSIFIED

ABSTRACT

This Final Technical Report for the Ada Compiler Evaluation Capability reviews the findings
and lessons learned in accomplishing Phase 3 of the project.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justification ____ __ _ |
By

| Distribution/

Availability Codes
hvail'aﬁa/gn
Dist Special
|

Al

Contents

1

o

SCOPE
11
1.2
1.3

ACEC
Final Technical Report

IDENTIFICATION

PURPCSE

APPLICABLE DOCUNMENTS

2.1
2.2

GOVERNMENT DOCUMENTS

ANALYSIS OF THE TEST SUITE

31
3.11
312
3.13
314
315
316
317
3.18
319
3.2
3.3
3.4

SUMMARY

NOTES
51

CONFIRMED EXPECTATIONS
MEDIAN
Single System Analysis
Conventions For Valid Portable Test Problems
INCLUDE
Timing Loop Code
FORMAT-MEDIAN Interface
Guides

MEDIAN ANALYSIS LIMITATIONS
POSSIBLE ENHANCEMENTS

Y Ly oo

-] =3 [\ }

10
10
10
10
11
11
13
14
14
15
16
IR
19

22

23
23

1 SCOPE

This section identifies the Ada Compiler Evaluation Capability (ACEC) Release 2.0 product,
states its purpose, and summarizes the purpose and contents of this Final Technical Report.

1.1 IDENTIFICATION

This is the Final Technical Report for the ACEC Release 2.0. It was developed by Boeing's
ACEC group under contract to the Wright Research and Dcvelopment Center.

The first release of the ACEC program developed a Software Product consisting of a suite
of benchmark test programs. support tools, a Reader 5 Guide, a User's Guide, and a Version
Description Document (VDD). The second release of the ACEC corrected problems found in
the first release; added approximately 300 new performance tests, assessors for program library
systems, symbolic debuggers, and system diagnostics, a new tooi to simplify the preparation
of input to MEDIAN, and a Single System Analysis (55A) tool; and upgraded supporting
documentation to permit a user to assess the performance of Ada compilation systems.

1.2 PURPOSE

The purpose of this document is to review the problems encountered and the lessons learned
in the process of developing the second release of the ACEC Software Product.

The descriptions on how to use the product have been presented in the Guides. Information
contained in the Guides will not be repeated here.

The numeric results of the ACEC Release 2.0 testing are presented in the ACEC Software
Test Report for Release 2.0 and will not be repeated here.

1.3 INTRODUCTION

The ACEC group in Boeing Wichita's Engineering Software and Languages Department tested
the ACEC Release 2.0 in November - December 1989. The ACEC was tested on 4 of the same
5 trial compilation systems (but with upgrades) that were used in the first release of the ACEC;
DEC. TeleSoft, 1750A cross compiler (these first 3 were VAX hosted), and the Apollo. The
Silicon Graphics was used this time in place of the Harris compilation system.

The ACEC Release 2.0 Software Product consists of:

e A suite of performance test programs

e A set of supporting packages

These include programs to test the accuracy of elementary math functions, programs to
test the accuracy of the system clock, programs to include the timing loop in the test
programs, and a portable implementation of a math library.

e A set of analysis tools

These inciude FORMAT, MED_DATA_CONSTRUCTOR, MEDIAN and Single System
Analysis (SSA)

o A set of assessors for diagnostics, symbolic debuggers, and program library systems

e Sample command files to compile and execute the tools and tests for a VMS and for a
UNIX based system which can be used as guides for porting to other systems

This report assumes that the reader is familiar with the ACEC Release 2.0 User's Gui-te.
the Reader's Guide, and the Version Description Document (VDD). Individual test problems
are referred to by name (in capitals) in this report. The reader should refer to the VDD Release
2.0 for 3 description of the problem. information from the Software Test Report Release 2.0 is
also referred to.

This document reviews the development of the second release of the test suite and sup-
porting tools. It gives an analysis of results and a review of the lessons learned.

2 APPLICABLE DPOCUMENTS

The following documents are referenced in this guide.

2.1 GOVERNMENT DOCUMENTS

MIL-STD-1815A Reference Manual for the Ada Programming Language (LRM)

2.2 NON-GOVERNMENT DOCUMENTS

D500-12470-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
User's Guide Release 2.0
Boeing Military Airplanes
P.O. Box 7730
Wichita, Kansas

D500-12471-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
Reader's Guide Release 2.0
Boeing Military Airplanes

D500-12472-1 Ada Compiler Evaluation Capability (ACEC)
Version Description Document (VDD) Release 2.0
Boeing Military Airplanes

0500-12467-1 Ada Compiler Evaluation Capability (ACEQ)
Software Test Report Release 2.0
Boeing Military Airplanes

Understanding Robust and Exploration Data Analysis,
by Hoaglin, Mosteller, and Tukey
John Wiley & Sons, Inc, 1983

3 ANALYSIS OF THE TEST SUITE

The numeric values obtained by executing the second release of the test suite were presented
in the Software Test Repcrt Release 2.0 and will not be duplicated here.

The following table displays the test problems where one of the quartiles was flagged
by MEDIAN as exceptional. Such highly vanable test problems might suggest cases where
systems are not performing comparable operations. These lines were extracted verbatim from

the MEDIAN report.

TEST PROBLEM

NAME | MIN LOWER MEDIAN UPPER MAX | SPREAD
I016 Il 0.27- 0.34- 1.00 2.90+ 3.81+ | 8.41
1020 | 0.27- 0.23- 1.00 3.58+ 3.67+ | 12.79
1024 } 0.15¢ 0.25- 1.00 3.96+ 22.48> | 15.71
1025 1 0.04¢< 0.25- 1.00 3.93+ 4.59+ | 15.45
1026 i 0.29- 0.30- 1.00 3.33+ 26.45> | 11.10
1027 | 0.21- 0.29- 1.00 3.51+ 25.28> | 12.30
1028 | 0.07¢ 0.37- 1.00 2.68+ 6.59> | 7.17
1030 I 0.07< 0.38- 1.00 2.66+ 6.57> | 7.10
10_80_20_1 i 0.20- 0.28- 1.00 3.63+ 4.01+ | 13.17
I0_.80_20_2 | 0.12< 0.17«< 1.00 5.90> 6.37> | 34.80
10.80_.20_3 1 0.09¢< 0.33- 1.00 3.04+ 3.57+ | 9.22
IG_INTER3 | 0.10¢ 0.13¢< 1.00 7.73> 11.20> | 59.82
IO_PATTERN2 b 0.07¢< 0.15¢ 1.00 6.67> 9.51> | 44.49
IO_PATTERN3 | 0.07¢< 0.16¢< 1.00 6.13> 8.80> | 37.52
I0_PATTERN4 | 0.08< 0.17«< 1.00 5.73> 9.48> | 32.87
I0O_PATTERNG6 | 0.05¢< 0.12¢< 1.00 8.21> 13.52> | 67.45
I0O_PATTERN7 | 0.05¢< 0.13< 1.00 7.74> 12.04> | 59.93
IC_PATTERNS | 0.06¢< 0.13¢< 1.00 7.42> 12.81> | 54.99
I0O_RECUR? | 0.12< 0.21- 1.00 4.72+ 6.68> | 22.27
I0_RECUR2 | 0.21- 0.28- 1.00 3.62+ 9.24> | 13.13
I0_RECUR3 | 0.27- 0.35- 1.00 2.84+ 7.19> | 8.06
I0_SCAN4 I 0.07¢ 0.16< 1.00 6.31> 10.35> | 39.77
ID_SCANS | 0.05¢< 0.12¢< 1.00 8.49> 14.77> | 72.01
SS153 | 0.06¢< 0.35- 1.00 1.2t 4.95+ | 3.41
55602 | 0.06< 0.37- 1.00 1.21 5.12+ | 3.22
S5753 | 0.09¢< 0.35- 1.00 1.28 5.61> | 3.62
35754 I 0.09¢ 0.37- 1.00 1.25 5.57> | 3.35
55802 I 0.03< 0.24- 1.00 1.19 1.43 | 5.04

The following list describes the features for each tiagged test problein tesponsible for the
performance variations as identified by the ACEC group.

TEST PROBLEM

NAME f FEATURES

1016 | References SIZE function of a DIRECT file. Performance
depends on underlying operating system. Some may not
require disc reference.

Ig20 | References END_OF_FILE function of a SEQUENTIAL file.
Performance depends on underlying operating system. Some
may not require disc reference.

Direct file random read/write in a small set of records
Direct file random reads from a small set of records
IO_PATTERN3 Direct file random reads from a small set of records
IC_TATTIDN . ZJirect f£il: .andeom rendr fvcm 2 small zet of records
I0O_PATTERNG Direct file random writes to a small set cf records
I0_PATTERN7 Direct file random writes to a small set of records

I0O_PATTERNS Direct file random writes to a small set of records

IO_PATTERNZ2

1024 ! Console I/0 device dependent
1025 | Console I/0
1026 | Console I/0
1027 | Console I/0
1028 | Console I/0
1030 | Ccnsole I/0
10_.80_20_1 | Direct file random reads from a small set of records
10.80_20_2 | Direct file random reads from a small set of records
10.80_20_3 { Direct file random reads from a small set of records
I0_INTER3 |
!
|

|

!

|
TO_RECUR1! | Direct file random reads from a small set of records
I0_RECURZ | Direct file random reads from a small set of records
I0_RECUR3 | Direct file random reads from a small set of records
I0_SCAN4 | Direct file random reads from a small set of records
10 SCANS | Direct file random writes to a small set of records
$S153 | Raises exceptions
$S602 ! Raises exceptions
SS753 | Raises exceptions
SS754 | Raises exceptions
SS802 | Call on CALENDAR.SECONDS

3.1 CONFIRMED EXPECTATIONS

The following subsections list design decisions which worked well

3.1.1 MEDIAN

If comparing multiple systems. some type of statistical analysis. similar to MEDIAN is necessary
for practical use of a test suite with more than a handful of test problems The analysis focuses
the attention of the ACEC users on the test problems with “unusual’ results [t permits a
form of report-by-exception where ACEC users can concentrate their efforts on exploring the
test problems with anomalous performance. Stnce most test problems will not be flagged by
TNEDIAN as outliers, ACEC users will be able to “skim ™ over most of them and concentrate
on those where large differences between systems were observed

‘Without an analysis tool. a test suite would require users to "understand” each of the test
problems. at least to know if a result or one system was good. bad, or indifferent. The residual
matrix is very helpful since it establishes a normalized metric for test resuits — a residual close
to one 1s “typical © No analysis tool can extract more information from a set of data than s
imphait 1n the collection of “raw’ measurements. but 1t can make the refationships between
data more apparent. It would be very easy to overlook the fact that a system executes some
test problems twice as fast as typical when all the data 1s presented as one large table of timing
measurements. It is important to prevent users from being overwhelmed by the volume of data

and MEDIAN serves this role

3.1.2 Single System Analysis

The Single System Analysis tool provides an automated way of comparing and displaving results
from sets of related performance test problems The ACEC team has manually compared results
of related tests before the development of this tool, however. the speed and automated nature
of the tooi now make 1t much simpler to do. T his ease of use encourages ACEC users +~ nbtain
the full benefits of collecting the performance data.

The Single System Analysis tool is straightforward in principle and no unanticipated prob-
fems arose during its development and use other than on the Silicon Graphics. The system
appears to have a problem with exception handling.

3.1.3 Conventions For Valid Portable Test Problems

Writing valid portable benchmarks is not easy. It is necessary to be careful in constructing
test problems so that they are not unduly optimizable This was anticipated and confirmed
past experience. The conventions established for developing tests were generally effective 1n
precluding unexpected optimizations

10

it INCLUDE

INCLUDE 1s an ACEC support tool used to textually expand Ada source text |t is used to
mnsert the timing loop code into the test programs. Refer to the User's Ginde for a discussion
on the use of this tool

The decision to use a separate tool to INCLUDE the timing loop code has worked well. It
has permitted flexible modification of the timing code

o To modify the basic timing loop code as needed

e Toswitch between (entral Processing Unit (CPU) time and elapsed time measurements

e Tn accommodate implementation dependencies (such as the GETADR calls to measure
rode expansion size when the label’ADDRESS attribute did not work)

3.1.5 Thng Loop Code

The timing loop code 1s responsible for measuring the execution time and code expansion for
rach test problem It s discussed in depth in the Reader’'s Guide, including the constraints on

its design and the conventions on wwniting test problems so that the test designer can measure
~hat was intendad

The timing loop code was enhanced from the first release in several ways

1 The termination condition for the inner timing ioop has incorporated a statistically robust
confidence test adapted from Understanding Robust and Exploration Data Analysis. by
Hoaghn tAosteller. and Tukey An unreliable mmeasurement indicator is printed when
erther a t-test or an r-test fails — the outer timing loop uses the t-test to terminate with
ronsistent measurements because this 1s a more conservative test

This has been a valuable change because 1t reduces the number of test problems which
are unnecessarily reported as unrehable measurements.

2 lost of the code associated with the timing loop in STOPTIMEQ has been moved into
a procedure in GLOBAL

Thisis valuable because 1t reduces the size of the generated code for multiple problem test

programs and reduces compilation time It saves ninetv-five lines af code per prahlem

3 The printing of time measurements has been modified so that an exponential format s
used for values less than ten microseconds or greater than one hundred seconds.

This 1s valuable because using the scheme from the first release. some of the small test
problems on fast machines would be truncated to one significant digit when printed,
making the effort expended to calculate measurements to a five per cent confidence

interval unnecessanly precise The processing for large times 15 also necessary (some of

11

H

the 1,0 test problems developed for the second release product execute for more than

100 seconds on come of the trial systems) so that FORMAT can recognize the large
times.

Sometimes measurement noise makes the timing loop code calculate a small positive time
for test problems which have been optimized into a null. The timing loop was modified
to check whether the code expansion size measurements indicate that the test problem
has bezn optirmized into a null and to print a zero time in this case

In the first release. the ACEC timing loop reported.all test problems with “uncorrected”
execution times less than the null loop time as zero. The timing loop was modified to test
for the case where subtracting the nuli loop time from the total problem execution time
to calculate the effective test problem execution time would produce a negative value
which is larger than can be attributed to measuiement noise. If the computed negative
time is “small’ (less than the variations in the null loop during inttialization of the timing
loop 1n executing each test program). it is reported as zero. A “large’ negative value
will result in an unreliable measurement error code.

This change was valuable because it tells users when unusual behavior is observed.

The timing loop was modified to detect when a null statement is being evaluated and to
not peiform the maximum number of iterations in this case.

The benefit of this change is that it saves some execution time when running test problems
optimized tnto null statements.

The timing lcop (INITTIME) was modified to explicitly test whether the system has
taken special steps to return a unique value for CALENDAR.TIME each time it is called.
Some operating systems have implemented the time function such that every value 1s
guaranteed to have a unique value during each day — where their actual clock resolution
is not as accurate as would be necessary to satisfy this system requirement with the
clock value. they simply track the number of calls on the TIME function since the actual
clock "ticked” and return as the function result the actual time plus the number of calls
(having ensured that on their fastest system. the number of calls which can be made
on the TIME function before the clock “ticks” is less than the resolution of the return
tvpe) On these systems. the low order hits are essentially nseless as indicators of actual
time, On first encountering this behavior, many programmers may think it is a strange
way for a system to keep time. however it does have utility — some low-level programs
are simplified if they can assume that time-stamps are unique and form a monotonic
sequence. It is typical for Ada systems to “pass-through” the operating system function
for the TIME function. so that this behavior is not hidden from Ada programs. The
first released ACEC timing loop could calcuiate inaccurate times — such systems render
the software vernier calibration process that the -ACEC uses futile. The second release

12

of the ACEC tests on initialization for this behavior and if detected, uses a large value
for MIN JITTER COMPENSATION in the timing loop to essentially make the ACEC
calculations not rely on the vernier.

This cliange is valuable because if it were not compensated for. the ACEC timing loop

could produce inaccurate estimates and error bounds on some systems for fast executing
test probiems.

3.1.6 FORMAT-NEDIAN Interface

The exec.tion of the ACEC test suite produces a log file containing performance measurements
for each test run. The log file must be processed before the measurement data can be input to
MEDIAN. The ri.ethod used in the first release to interface the results file and the MEDIAN
analysis tool was awkward. The first release required the user to execute FORMAT to extract a
data aggregate, use a text editor to insert the aggregate into MED_DATA. and then recompile
MED _DATA and MEDIAN.

For the second release. the MED DATA CONSTRUCTOR tool was written to automate
the process of creating a MED .DATA package from the outputs of FORMAT from differ-
ent systems. The user must execute FORMAT to create data aggregates and then execute
MED DATA CONSTRUCTOR to create a MED DATA package containing data for the spec-
ified systems. MED DATA and MEDIAN are then compiled. and MEDIAN is executed. The
user must use a text editor to create a file containing the system names and the names of the

data files to be used by MED_DATA_CONSTRUCTOR. The user is not required to edit the
data aggregates.

Another approach would have been to combine in one program the functions of FORMAT,
MED _DATA_CONSTRUCTOR, and MEDIAN. This was not done because the ACEC interface
must deal with bare machines which have limited |/O capabilities.

The method selected permits the collection and processing of results on target machines
which have only a console output device (that is, no way to write to a file for processing by
another program). This constraint limits the design options and the degree of “friendliness”
possible — the ACEC would be friendlier if each test program updated a file to reflect results,
then MEDIAN (or other analysis tools) could read this file.

The current interface provides some important advantages.
1. The order in which a user executes test programs ts not important

2. Users do not have to create or update a large positional array. It would be error prone
to manipulate an aggregate with over a thousand entries — the risks of recording results

from one test problem as coming from another test problem would be large. Aggregates
with named associations are helpful here.

13

3. ltis a flexible system. It is simple for a user to incorporate additionai test programs into
the suite, as long as they avoid naming conflicts with existing test problems. It is siinple
for a user to use MZDIAN to analyze subsets of the data, such as only the tasking tests.

3.1.7 Guides

The writing of effective user documentation is difficult and time consuming. It is also very

important to the usability of a product, particularly when there is no provision for telephone
“hot-lines” for helping users who run into problems.

The ACEC user documentation is extensive (over 400 pages) and comprehensive.
The User's Guide and Reader’'s Guide present an introduction to the issues involved in
measuring performance. They discuss:

¢ Compiler optimization

o Aspects of machine design which influence performance
o Pitfalls in measuring system performance

e Statistics of collecting and analyzing performance data

They provide helpful background information to ACEC users about performance evaluation in
general and Ada in particular. They also provide detailed instructions for using the ACEC.

The ACE” Version Description Document (VDD) contains useful information about the
test suite itself and the individual test problems.

The general reaction to the first release of the ACEC documentation was favorable.

3.1.8 Assessors

Release 2 of the ACEC includes new assessors for the Ada program library management system,
the diagnostic messages, and the symbolic debugger. The assessors, especially the debugger
assessor, were found to be more time-consuming to execute than originally predicted. This i3

due to two factors:
e Adaptation effort.

The assessors test a wide range of capahilities and a large number of individual actions
which must be separately adapted to each system. The effort required is significant, even
when the evaluator is familiar with the product.

The program library assessor includes 19 scenarios with 80 separate questions.

The diagnostic message assessor includes 45 scenarios with 455 separate questions.

The symbolic debugger assessor includes 29 scenarios with 118 separate questions.

e Learning time.

There was a learning time required for an evaluator to become familiar with a system
not previously used.

In order to perform the library assessor and the debugger assessor, the evaluator must
learn implementation specific program library and debugger commands and concepts.
It is necessary to adapt the commands used to execute each scenario. The assessors
cover a broad scope, and before deciding that some capability was not supported, it
was necessary to stop and review manuals to make sure that something had not been
overlooked in the initial learning process.

The initial projections for learning time were based on the assumption that the trial
systems would be similar to the system the assessors were developed on. This was overly
optimistic.

We believe that ACEC users will find the effort worthwhile because it will provide them
with more organized information about the capabilities of systems than they would acquire
with a similar amount of time spent in unstructured experimentation. Although vendors
can tell their users that their library system and/or the debugger provide all the useful

capabilities, running the ACEC assessors will assure the testers that the capabilities exist
and that they know how to use them.

3.1.9 Portable Math

The second release of the ACEC added a representation independent version of MATH_DEPENDENT,
greatly increasing the portability of the ACEC provided generic math library and therefore, sim-
plifying the programmer effort required to produce a working math library.

There was one trial system which provided a library which was not usable for an interesting
reason. That system named the provided math library “MATH" — the same name ACEC uses
for its math package. This presents a naming conflict which could not be resolved without
extensive modifications to the source text of the ACEC test programs and analysis tools or
modifications to the source of the implementation provided math library. Since neither of these
alternatives was acceptable, on this system testing proceeded using the ACEC provided portable
math library.

The ACEC math parkage specification (and all the programs referencing the cperification)
were changed to be compatible with a subset of the Association for Computing Machinery.
Special Interest Group on Ada, Numerics Working Group (NUMWG) recommendations. This
change may be of increasing value in the future if and when more implementations adapt the
NUMWSG recommendations. Only one of the trial systems provided a NUMWG implementation,
and on this trial system there were no problems with using the vendor provided implementation
in place of the ACEC provided math package.

15

3.2

PROBLEMS ENCOUNTERED

During the development of the ACEC, the test suite and tools were executed on multiple
systems both to verify portability of the code, and to provide sample data to demonstrate the
comparative analysis tools. These are the “trial” systems referred to throughout this report.
During this process some implementation errors and restrictions were discovered in the trial
systems, as detailed below:

Some systems did not support the label’ ADDRESS clause (used in the ACEC to measure
code expansion size).

Most systems do not support tying tasks to interrupts (a Chapter 13 feature).

Most systems do not support a type'SMALL specifying a fixed point delta which is not
a power of two.

Most systems did not support asynchronous {/QO operations — that is, an 1/O operation
in a task causes the program to halt until the 1/O completes.

A few systems failed to always reclaim implicitly allocated space. This prevented some
test problems from completing. The LRM does not require that the space be reused, so
this is an implementation restriction rather than an error.

Some systems restrict the type of files that can be processed. Test problems using a
SEQUENTIALLIO instantiated with an unconstrained type (that is, STRING) were not
accepted by many systems, as were problems using sequential and direct files with a
variant record. This feature is not supported by many of the trial systems. On the
DEC Ada system the test problems would not run using the default FORM strings and
a system dependent adaptation was necessary.

The test problem (S5747) which calls on an assembly language procedure did not work
on all systems. In several cases, the trial systems claim to support the facility, but the
provided documentation was unclear, and the initial attempt to adapt the test problem

failed.

Capacity limitations — some programs were too large to be compiled by some of the
systems.

The implementation dependent type SYSTEM ADDRESS is converted to an integer type
to calculate sizes. The size of this integer type is implementation dependent and may
need to be adapted for use on different systems.

Some implementations imposed restrictions on length clauses. Several only supported

the declaration of specific predefined sizes. For example, several would not accept a
specification for a three bit wide field.

16

o Preemptive priority scheduling was not supported on all the trial systems. This caused
some of the test problems to report a runtime error.

¢ Some compilation systems did not support integer types which required more than 16
bits. This restriction prevented some test programs from operating.

o One system {for an embedded target) did not support any file I/0.

e Some systems did not support an option to specify tasking discipline (time-sliced vs run-
till-blocked). This is not required but tests for it were included in the second reiease.

o Particularly with the Silicon Graphics system, there were test problems which were mea-
sured as taking zero time but were not NULL statements (they had positive code ex-
pansion sizes, performed non-optimizable operations. and code was generated). In some
cases, when the test programs were rerun, the spurious zero measurements did not reoc-
cur, but this was not universal.

Imtial investigation is inconclusive and more testing with the system would be required

to i1solate the source of the problem, which might be applicable to other compilation
systems.

Although the portability of the test suite could have been improved by restricting it to
use only the features supported by the most limited of the known Ada implementations, this
was not done. It is important to evaluate all the capabilities of the language. Some of the

features not supported by all systems are important to some users and need to be covered in
a comprehensive test suite.

17

3.3 MEDIAN ANALYSIS LIMITATIONS

One potential criticism of the ACEC product is that the system factors computed by MEDIAN
will not reflect the performance of Ada implementations on the types of applications all users
are interested in. MEDIAN computes system factors by averaging over the test problems. If the
distribution of language features is very different in a user’s application than the distribution
in the ACEC test suite, the system factors may not accurately predict performance of different
systems on the user’s ultimate application. For example, comparing two systems, one of which
provides floating point support by software simulation and one with hardware support, the
system with software floating point will be slower. For a user whose applications will not use
floating point, the differences due to floating point speed are not important and such a user
would prefer that the speed of floating point operations not influence the evaluation of systems.

The above situation reflects the fact that the system factors are biased by the selection of
test problems. There are several issues involved here:

1. Some limitation is unavoidable. If there was only one test problem, critics could complain
that the problem does not represent the usage of language features they anticipate
for their applications. If there are multiple test problems. covering different language
features, critics could complain that the combination of the test problems does not
reflect their anticipated usage.

2. The limitation is not unreasonable. Users with specific interests may find information

about them — 16 or 32 bit integer operations, execution with or without constraint
checking suppressed, etc.

The ACEC makes heavy use of variables declared in library packages (as contrasted to
vaniables declared in local scopes). This reflects our expectations of typical usage. The
ACEC also contains test problems using locally declared variables so differences between
scopes can be observed. The fraction of operations on integer, floating-point, and fixed-
point types, and the precisions of the operations are application sensitive. The computed
system factors will reflect the distribution of usages in the test suite. Users interested in
the performance of specific language features can examine the test problems using these
features, by reference to the VDD appendices. If some language features are particularly

slow on one system, MEDIAN will flag test problems using this feature as outliers, drawing
attention to the performanece icsie.

3. Itis easy for ACEC users to select a subset of test problems (perhaps including additional
test problems they develop themselves) to reflect their expected usage. For example. a
user may decide to ignore all the file I/O test problems if their project is targeted for a

bare machine; for applications targeted to a general purpose multiuser system, it may be
best not to consider the interrupt test problems.

18

3.4 POSSIBLE ENHANCEMENTS

Several possible enhancements to the ACEC product have been mentioned at conferences by
ACEC users. Some of these have been included in the second ACEC release. Those that are
not yet available are defined in the following paragraphs.

o Capacity testing

The ACEC does not include any explicit tests designed to systematically determine ca-
pacity limitation at compile, link, or execution time. Some implicit capacity testing is
inherent in the organization of the test suite and the assumption that a system will be
able to compile and execute the programs in the ACEC Software Product. However, it
would be useful to incorporate explicit capacity testing.

e Systematic compile speed testing

The ACEC provides for the recording and analysis (through MEDIAN) of the elapsed
time to compile and link the performance test programs. However, these test programs
are not designed to contain selections of language features (distributions of features)
expected to cause variations in compile/link times. It would be useful to incorporate test

programs explicitly designed to emphasize features expected to result in different compile
times.

o Memory size

It has been suggested that the ACEC be enhanced to include programs to test execution
time memory capacity limits.

e Additional problems

Although large, the ACEC is not exhaustive in its testing. Problems of interest to specific
application areas could be added to increase the utility of the ACEC.

e Reliability of timing measurements

The ACEC timing loop code has evolved during the development of the product, and
there are several enhancements which could be explored in order to improve its ability
to efficiently produce reliable, portable timing measurements. Of particular concern is
the tendency on one of the trial systems far unreliable codes to he reported rather than
time measurements — it may be valuable to experiment with increasing the maximum
number of outer timing loop cycles (GLOBAL. MAX_ITERATION COUNT and associated
variables, including the values of the array GLOBAL.T_VALUE).

e User interface

Several users have criticized aspects of the ACEC user interface, as listed below:

19

— Multiple problem programs
Some of the ACEC performance test programs contain muitiple problems. When
one problem in a program fails to compile, no results are obtained for any of the
problems ir that program unless the ACEC user modified the source program to
correct (or remove) the failing problem. It has been suggested that each test
problem be presented as a separate compilation unit.

— Awkward data interface

The FORMAT - MEDIAN interface in release one has been criticized as awkward
and the time to re-analyze data as long. {f MEDIAN were to read a set of FORMAT
aggregates. analysis of subsets of data would be quicker and simpler to perform.
The MED_DATA_CONSTRUCTOR tool introduced with the second release should
help.

— MATH package

The first release of the ACEC was criticized because significant user effort was
required to adapt the MATH package to a new target. Three steps taken in the
second release should greatly ease this effort.

t In the second release, package MATH s NUMWG compatible, making it easy
to use an implementation provided math library on targets which support the
NUMWG recommendations.

* A representation independent implementation of package MATH DEPENDENT
is provided which makes porting the ACEC provided package GEN_MATH
straightforward.

+ The User's Guide discussion of math porting issues has been expanded making

it clear that the users should try to interface to an implementation provided
math library where available.

o Weighting of test problems for analysis

There is no current provision for weighting test problems based on importance. Some
users have requested an easy way of isolating test problems of interest to them and of
analyzing performance data emphasizing specific areas. The ACEC users have had, and
continue to have, the option of using MEDIAN on any subset of problems they wanted
to consider. This suggestion is related to the alternative analysis techniques suggested
for MEDIAN statistical processing.

o MEDIAN statistical processing

Some users have suggested that the ACEC statistical analysis technique be modified
to provide for inference - confidence intervals and significant differences. 1nere is some

statistical research which is suggestive of ways to add confidence estimates while retaining
robust statistical analysis, but the issue would require more study.

20

o User Documentation

Some users have suggested that the ACEC documentation be expanded to include all
issues which might affect comptler selection.

21

..

4 SUMMARY

Sigmficant effort was expended to address criticisms of the original ACEC release. All of the
reported problems with Release 1.0 were either addressed in this second release or identified
as possible future enhancements. There were no major surprises with the ACEC Release 2.0
product. The ACEC found there were general improvements in the Ada compilers from Release
1.0 to 2.0. However. there was still one trial system that was barely usable due to system
crashes and destroyed directories.

The new features of this release were: 300 new performance tests (1/0. implicit storage
reclamation, application profile tests, etc.); assessors (library management. symbolic debugger,
and diagnostic messages). the MED_DATA CONSTRUCTOR: and the Single System Analysis
(SSA) tool.

Even though approximately 300 performance tests were added, the total lines of “included”
source remained constant due to a change in the timing loop code. Also, changes to the
examplie COM files for the performance tests simplified porting. For the new |/O performance
tests. both the file and console /O tests showed large differences between systems — which
was anticipated. For the new implicit storage reclamation performance tests, it was surprising
to find failing systems.

The assessors evaluate features that were believed to be the most valuable for day to day
usage, but not all of these capabilities are essential to have a usable system. The Diagnos-
tics Assessor proved to be straightforward to execute and easy to adapt. User feedback on
its grading system will give an idea as to its usefulness. The Library and the Symbolic De-
bugger Assessors required more adaptation effort than was anticipated. Some systems do not
support many of the extensive capabilities explored in these assessors. but the assessors were
designed with future technology in mind. One system. the 1750A cross compiler, did not have
a debugger. Most of the trial systems’ program libraries were more fragile than anticipated.

The MED DATA CONSTRUCTOR program was an improvement to the FORMAT -
MEDIAN interface. This program worked as anticipated by significantly reducing the manual
effort needed to format the data for the MEDIAN analysis.

The SSA did not provide any new information, but organized the available data and pre-
sented it so that the user did not have to tediously compare related tests. By prcviding a tool
which automates the comparisons of related tests, the SSA will give more insight into system
performanre with less nser effort than when the romparisons had to he mada hw hane

To execute this ACEC Release 2.0 test suite and assessors through the analysis phase is
not a trivial task. A lot of time, effort and computer resources will be necessary in order
to extensively test an Ada compiler. But, when a user has completely run the ACEC test
suite, assessors and analysis tools, the majority of a compilation system's features will have

been exercised and the evaluator will have a good, overall knowledge of that compiler and
associated capabilities.

22

5

NOTES

This section contains information only and is not contractually binding.

5.1

ABBREVIATIONS AND ACRONYMS

ACEC
ACVC

BMA
CPU
/0
LRM

NUMWG

SSA
TOR

vDbD

Ada Compiler Evaluation Capability
Ada Compiler Validation Capability

Boeing Military Airplanes

Central Processing Unit

Input / Output

(Ada) Language Reference Manual (MIL-STD-1815A)
Numerics Working Group (NUMWG)

subcommittee of the Association for

Computing Machinery, Special Interest

Group on Ada

Single System Analysis

Technical Operating Report

Version Description Document

23

